单片机与嵌入式系统应用
主办单位:工业和信息化部
国际刊号:1009-623X
国内刊号:11-4530/V
学术数据库优秀期刊 《中文科技期刊数据库》来源期刊
       首 页   |   期刊介绍   |   新闻公告   |   征稿要求   |   期刊订阅   |   留言板   |   联系我们   
  本站业务
  在线期刊
      最新录用
      期刊简明目录
      本刊论文精选
      过刊浏览
      论文下载排行
      论文点击排行
      
 

访问统计

访问总数:20217 人次
 
    本刊论文
基于单片机煤气浓度监控系统的设计

  论文导读::单片机启动中断子程序。台工控机(IPC)及信号电缆。往往是一台工控机控制一个工业现场RS-485网络。

  论文关键词:单片机,工控机,网络,RS-485通信

  在我厂煤气生产各环节中,特别是在变送机、冷鼓、压缩等工段,由于各种原因,煤气渗漏少 量泄漏时有发生,工房车间内渗漏的煤气集聚达一定浓度时会发生爆炸。而长期以来,工房车间内煤气浓度的监测工作仅依靠工人的经验进行判断,这不仅给生产带来了不安全因素,也对车间岗位工人的生命造成了一定的威胁,因此,有必要设计一种多点煤气浓度实时采集监控系统,这种系统能在工控机(IPC)上实时显示测量点的煤气浓度;在该测点浓度超过设定临界值时能自动接通轴流 风机进行排送、吹散并发出相应的报警,还可通过工控机绘制整个生产过程中同一测点的浓度变化曲线图。

  该监测系统对煤气厂安全生产有着重要意义。

  1、硬件设计

  本文设计的煤气浓度采集系统结构框图如图1所示

  本系统采用具有国家安全认证的EXDII型煤气浓度监测器作为传感器监测车间机房内的煤气浓度,系统设计包括8个浓度监测模块,1个RS-485 8口HUB,一台工控机(IPC)及信号电缆。浓度监测模块是由89S52为处理器,具有数据采集、数据传输、故障检测功能的控制电路构成。每个模块测量8点浓度工控机,系统共采集64点浓度数据,每个监测模块采用一个AD0832模数转换芯片,通过其八选一多路选通功能控制分时采样的8个监测器输入信号的输入。

  每个模块采用1个支持RS-485半双工通信芯片SN75LBC184实现单片机到RS-485网络通信。8个模块通过1个RS-485光电隔离1拖8口的HUB实现与上位机的通信。该模块拥有RS-485到RS-232自动转换功能,可直接接工控机IPC的串行COM口,各监测模块采集的数据通过8口HUB传输到工控机,并在工控机进一步处理、显示。

  1.1 煤气浓度监测模块设计

  煤气浓度监测模块以单片机AT89S52为核心进行煤气浓度的采集、数据传输及故障检测,电路如图2所示小论文。

  单片机P0.0-P0.2口通过锁存器74LS373 接AD0832的ADDA、ADDB、ADDC端,作为8路监测器输入信号的地址选通线分别对8路煤气浓度输入信号通道进行选通并对输入的模拟信号进行模数转换,在其中一路信号转换完成后,AD0832的EOC端向89S52发出中断请求, 单片机启动中断子程序,由P0口从AD0832的D0-D7脚读入并存储数据后,开始进行下一路数据的采集。

  煤气浓度监测器选用国家认证EXDII型专用浓度监测器,采用DC24V电源,输出为1-5V信号(0V为故障信号输出),有两路继电器输出,可实现现场两级报警。

  P2.0-P2.6、P1.3与一组8个MGA607光耦、驱动管和JZX-22F/4Z DC24V继电器一起构成控制模块,控制8台轴流风机的起停。

  在被测点煤气集聚浓度达到安全浓度上限设定值时,P2.0-P2.6、P1.3相应的管脚输出高电平 ,驱动MGA607工作,从而使驱动管工作,使

  得JZX-22F/4Z继电器线圈通电,继电器常开点闭合,接通交流接触器控制线圈回路,从而启动轴流风机对集聚在测点所在机房的煤气进行吹散;在被测点的煤气浓度小于安全上限值时,P2.0-P2.6、P1.3相应管脚输出低电平,使MGA607截止,从而使得驱动管截止,继电器控制线圈回路被切断,闭合的常开点断开,切断交流接触器的控制线圈回路,断开轴流风机电源工控机,轴流风机停止运行。

  1.2 RS—485通信硬件设计

  RS-485串行通信采用差分平衡的电气接口,利用平衡驱动,差分接收的方法,从根本上消除了信号地线,因此,RS-485可用于1200m的远距离,速度为1000kbps的高速通信;降低传输速度,传输距离可以更远;在一条总线上,允许同时存在32个接收器和32个发送器。

  因煤气厂车间多为高跨度大面积,多层混凝土结构,其监控操作室到各生产关键部位的距离多在60米以上。为了提高生产的安全性,实时采集到各关键点的煤气浓度值,数据采集模块应尽量靠近测点位置,这就使该数据采集模块分布面积较大,与中央工控机距离较远。因此,本系统选用RS-485串行通信,其转换芯片用支持半双工通信芯片SN75LBC184。该芯片可以支持250kbps的速率,并具有瞬变高压抑制功能,能抗雷击、静电放电,避免因交流电故障引起的非正常高压脉冲冲击。芯片A、B引脚为RS-485总线接口分别与RS-485光隔1拖8口HUB的+AX,-BX(X=0~7)引脚相连接,D引脚是发送端,R

  引脚为接收端,分别与单片机串行口的RXD、TXD连接,RE、DE为收发使能端,与单片机的P1.6口相连,作为收发控制(见图2)。

  1.3 RS-485总线到工控机(IPC)信号转换

  通用工控机上一般只有2个RS-232串行接口,即COM1口和COM2口,没有RS-485接口。在当前应用中,为了实现资源的有效利用,往往是一台工控机控制一个工业现场RS-485网络,这就意味着必然要实现在多个下位机与工控机之 间的通信,即必须进行电平转换与信号选通。

  本系统选用现有的RS-485光隔1拖8口HUB(HUB8485G)。其有1个上位机RS-485/RS-232口和8个下位机RS-485口。其下位机侧可以分别接8个下位机的RS-485口。支持最高通信速率保证9600bps以上、实际可达38.4kbps,同时具有吸收浪涌电流的抗雷击保护功能。HUB8485G适合所有半双工通信软件。其上位机端可以直接将RS-485信号转换为RS-232信号工控机,与工控机的串行COM口连接。

  2软件设计

  软件设计主要包括:煤气浓度采集模块的浓度数据采集软件设计;数据采集模块与工控机通信部分的软件设计(包括串口初始化、波特率设置、通信协议、数据传输等);上位工控机温度数据管理监控软件设计。

  2.1浓度数据采集软件模块设计

  浓度数据采集软件模块流程图如图3所示。单片机采集的浓度数据及传感器状态数据贮在片内RAM中,随时准备供上层软件读取小论文。

  2.2通信软件模块设计

  各单片机采样模块的通信软件流程图如图4所示。通信软件设计采用从动式中断通信设计,预先设定好各模块的单片机地址。当单片机采样模块接收到上位工控机(IPC)的 “启动采样” 指令时,单片机采样模块开始对该模块的8个浓度监测回路进行采样,并检测其控制的传感器的故障状态。

  当单片机采样模块从上位工控机接收到“本模块地址”时,启动该模块与上位机之间的数据通信,传输相应的浓度数据以及煤气浓度传感器的故障状态数据,而地址不符的单片机采样模块在此期间不与上位机进行通信。

  2.3 PC端监控软件设计

  PC端监控软件用VC6.0编写,主要完成煤气浓度数据管理、数据显示、相应点浓度曲线显示,数据打印以及浓度数据监控等。一旦发现在给定的时间段内,某采样点的数据连续超过临界值,则采用声光报警技术,提醒工作人员采取相应技术措施确保安全生产。

  结束语:本系统模/数转化采用500K振荡频率,完成8路采样时间周期在1s以内。上位机通过与监控模块的通信可实现不间断的车间、机房内煤气浓度的实时测控。本系统不仅改变了过去车间机房煤气浓度依靠岗位工人经验判断的落后状况,实现了监测、控制的自动化,上位机还可以提供趋势图、历史数据等功能。对技术问题的分析提供了精确的数据支持。本系统在2005年投入试运行以来,由煤气浓度超标而引发的中毒安全事故为零。实践证明,该系统性能稳定、工作可靠,应用效果良好。

  参考文献

  [1]王福瑞。单片机微机测控系统设计大全(M)。北京:北京航空航天大学出版社,1999.

  [2]梁新荣。高精度多路温度检测系统的研制(J)。仪表技术与传感器,2001,(6):16~17,27.

  [3]樊俊峰,尹斌。简易RS-232RS-485智能转换器[J].微电子技术,2002,(8):38~41.

特别说明:本站仅协助已授权的杂志社进行在线杂志订阅,非《单片机与嵌入式系统应用》杂志官网,直投的朋友请联系杂志社。
版权所有 © 2009-2024《单片机与嵌入式系统应用》编辑部  (权威发表网)   苏ICP备20026650号-8